Analytical Prediction of Seismic Response of Steel Frames with Superelastic Shape Memory Alloy

ثبت نشده
چکیده

Superelastic Shape Memory Alloy (SMA) is accepted when it used as connection in steel structures. The seismic behaviour of steel frames with SMA is being assessed in this study. Three eightstorey steel frames with different SMA systems are suggested, the first one of which is braced with diagonal bracing system, the second one is braced with nee bracing system while the last one is which the SMA is used as connection at the plastic hinge regions of beams. Nonlinear time history analyses of steel frames with SMA subjected to two different ground motion records have been performed using Seismostruct software. To evaluate the efficiency of suggested systems, the dynamic responses of the frames were compared. From the comparison results, it can be concluded that using SMA element is an effective way to improve the dynamic response of structures subjected to earthquake excitations. Implementing the SMA braces can lead to a reduction in residual roof displacement. The shape memory alloy is effective in reducing the maximum displacement at the frame top and it provides a large elastic deformation range. SMA connections are very effective in dissipating energy and reducing the total input energy of the whole frame under severe seismic ground motion. Using of the SMA connection system is more effective in controlling the reaction forces at the base frame than other bracing systems. Using SMA as bracing is more effective in reducing the displacements. The efficiency of SMA is dependant on the input wave motions and the construction system as well. Keywords—Finite element analysis, seismic response, shapes memory alloy, steel frame, superelasticity

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Superelastic Retrofitting Method for Mitigating the Effects of Seismic Excitations on Irregular Bridges

Irregularities in bridge pier stiffness concentrate the ductility demand on short piers; while not operating on the longer and more flexible ones. The existence of non-uniform, ductility demand distribution in bridges significantly influences seismic response. As such, this paper proposes a new approach for balancing the ductility demand in irregular bridges by utilizing shape memory alloys (SM...

متن کامل

SEISMIC OPTIMIZATION OF STEEL SHEAR WALL USING SHAPE MEMORY ALLOY

Nowadays, steel shear walls are used as efficient lateral-load-resistant systems due to their high lateral stiffness and carrying capacity. In this paper, the effect of substituting a shape memory alloy (SMA) material is investigated instead of using conventional steel in the shear wall. A numerical study is conducted using finite element method (FEM) by OpenSees software. For this purpose, at ...

متن کامل

Energy-balance assessment of shape memory alloy-based seismic isolation devices

This study compares the performance of two smart isolation systems that utilize superelastic shape memory alloys (SMAs) for seismic protection of bridges using energy balance concepts. The first isolation system is a SMA/rubber-based isolation system (SRB-IS) and consists of a laminated rubber bearing that decouples the superstructure from the bridge piers and a SMA device that provides additio...

متن کامل

Evaluating the Seismic Performance of Steel-SMA Hybrid Braces

The seismic performance of hybrid braces composed of steel and shape memory alloy (SMA) was investigated in this paper. Six types of hybrid braces were used, constituted by SMA content of 0, 20, 40, 60, 80, and 100%. A nonlinear dynamic analysis was performed under El Centro earthquake records, with the maximum acceleration of 0.6g and 0.9g. Our results showed that the seismic performance, i.e....

متن کامل

Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses

In this paper, the superelastic shape memory alloy (SMA) slit damper system as an alternative design approach for steel structures is intended to be evaluated with respect to inelastic behavior simulated by refined finite element (FE) analyses. Although the steel slit dampers conventionally used for aseismic design are able to dissipate a considerable amount of energy generated by the plastic y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011